

Nombre:

GUIA 2: "¿Cómo se evidencia lo que no se ve?: Reacciones Red-Ox" (Parte 2)"

Objetivo:

- Explicar, por medio de investigaciones experimentales y no experimentales, fenómenos ácido-base, de óxido-reducción y de polimerización-despolimerización presentes en sistemas naturales y en aplicaciones tecnológicas.
- Valorar la importancia de la integración de los conocimientos de la química con otras ciencias para el análisis y la propuesta de soluciones a problemáticas actuales, considerando las implicancias éticas, sociales y ambientales.

Tema 3 → Estados de Oxidación (EDO).

Número de Oxidación o Estado de Oxidación (EDO): Corresponde a la carga del elemento químico, en otros casos se le llama valencia; es decir, corresponde a un valor arbitrario que se le ha asignado a cada elemento químico, el cual indica la cantidad de electrones que podría ganar, perder o compartir cuando se forma un compuesto.

Para calcular el número de oxidación se deben tener en cuenta las siguientes reglas:

Regla Nº 1: El número de oxidación de cualquier átomo en estado libre o fundamental o sin combinar en la naturaleza; es decir, no combinado, es cero.

Ejemplos: Pt, Cu, Au, Fe, H₂, O₂, Cl₂, Hg₂, He. Todos sus EDO son igual a 0

Regla Nº 2: El número de oxidación de cualquier ion monoatómico es igual a su carga.

Ejemplos: El EDO del Na+ es +1, el del Ca²⁺ es +2, el del Cl- es -1.

Regla № 3: El número de oxidación del hidrógeno es +1 en todos los compuestos no iónicos, excepto en el caso de los hidruros que es -1.

+ 1: cuando el hidrógeno se combina con un no-metal. Ejemplos: En compuestos como el HCl, Hl, H₂O, NH₃ y CH₄, H₂SO₄, NaOH.

1: cuando el hidrógeno se combina con un metal (hidruros)

Regla Nº 4: El número de oxidación del oxígeno es -2 en todos los compuestos, excepto en el caso de los peróxidos que es -1.

Ejemplos: NaH, LiH

-2: para el oxígeno en general.

Ejemplos: CaO, NaOH, H₂O, H₂SO₄, CO₂, NO, FeO, HNO₃.

-1: para el oxígeno en peróxidos.

Regla Nº 5: En las combinaciones entre lo no metales en que no intervenga el hidrógeno u oxígeno, el no metal que esté por encima o a la derecha del otro en la tabla periódica se considera negativo. (Revisar una tabla periódica con las posiciones).

Ejemplo: peróxido de hidrógeno (agua oxigenada) H₂O₂

Ejemplo: en BrF3, el número de oxidación del flúor es -1 y el del bromo es +3, mientras que en AsBr3 el bromo es -1 y el arsénico es +3.

Ejemplos:

Cu₂O (óxido cuproso); EDO_{Cu}= +1; como hay dos átomos de cobre, se multiplica el EDO por el número de átomos de la molécula: 2 (+1) = +2 y el EDO_O= -2, al sumar ambos valores, la suma de los EDO debe ser cero:

$$(+2) + (-2) = 0$$

Regla Nº 6: La suma algebraica de los números de oxidación de todos los átomos de una fórmula para un compuesto neutro debe ser cero.

 H_2SO_4 (ácido sulfúrico); $EDO_H = +1$; como hay 2 átomos de H, se multiplica el EDO por el número de átomos de la molécula: 2 (+1) = +2; el número de oxidación del azufre es + 6 como existe 1 átomo, entonces, 1 (+6) = +6 y como el $EDO_0 = -2$, y hay 4 átomos = 4 (-2) = -8. La suma de los EDO debe ser cero:

$$(+2) + (+6) + (-8) = 0$$

Regla Nº 7: En un ión la suma algebraica de los números de oxidación de todos los átomos debe ser igual a la carga del ion.

Ejemplos:

 PO_4^{3-} (fosfato); $EDO_P = +5$; hay 1 átomo, entonces 1(+5) = +5; como el $EDO_0 = -2$, y hay 4 átomos 4(-2) = -8. El ion fosfato tiene carga -3, por lo tanto, al sumar los números de oxidación, el resultado debe ser igual a -3.

$$(+5) + (-8) = -3$$

A) Azufre (S) en SO ₂ A) Azufre (S) en SO ₂	B) Azufre (S) en SO ₄ ² -		
C) Nitrógeno (N) en NO ₃ -	D) Nitrógeno (N) en NO ₂		
E) Manganeso (Mn) en MnO ₄ -	F) Carbono (C) en C ₂ O ₄ ² -		
G) Manganeso (Mn) en Mn ²⁺	H) Carbono (C) en CO ₂		
I) Nitrógeno (N) en NH ₄ +	J) Azufre (S) en SO ₄ ² -		
1) INITIOGETIO (IN) ETI INI 14	0) 1-2 uii 6 (0) 611 004-		

K)	Cloro	(Cl	en (CIO ₃
/		٠·.	, •	,

L) Azufre (S) en H₂SO₃

M) Hierro (Fe) en Fe(OH)₃

N) Potasio (K) en KH

2. Para el siguiente compuesto llamado ion dicromato, Cr₂O₇2- ¿Cuál es el estado de oxidación (EDO) del cromo?

A) -2

D) -6

B) +2

E) +6

C) 0

3. El KMnO4, llamado permanganato de potasio, presenta una disociación de sus especies iónicas, la cual se describe en la siguiente reacción química

$$KMnO_{4 (ac)} \rightarrow K^+ + MnO_{4^- (ac)}$$

Para el Mn en el ion MnO₄-, se tiene que su EDO corresponde a:

A) -7

D) +1

B) -1

E) +7

C) 0

4. En la siguiente reacción química:

$$MnO_{4^{-}(ac)} + H_{2}O_{2(ac)} \rightarrow MnO_{2(ac)} + OH_{-(ac)} + O_{2(q)}$$

¿Cuál de los elementos en las especies involucradas posee un mayor EDO?

A) Mn en MnO₄-

D) O en OH-

B) O en H₂O₂

E) O en O₂

C) Mn en MnO₂

- 5. ¿En cuáles de los siguientes pares de especies químicas los elementos presentan el mismo EDO?
- A) Mn en MnO₄ y MnO₂

D) S en SO $_3$ y SO $_4$ 2 -

B) Cr en CrO₄ ²- y Cr₂O₇ ²-

E) O en Na₂O y Na₂O₂

C) Cl en Cl-y Cl₂