

Guía 19: Raíces

Nombre(s): Fecha: 23 de noviembre 2020
--

Instrucciones:

- Recuerde desarrollar esta guía en el cuaderno de la asignatura.
- La guía se compone de dos ítems: Alternativas y Desarrollo.
- En el segundo ítem debe incluir el desarrollo de cada ejercicio, de lo contrario no será evaluado.
- No utilice calculadora ni teléfono para el desarrollo de esta guía.
- Plazo máximo: viernes 27 de noviembre por el buzón de tareas.
- Frente a cualquier duda contáctame por mi correo gcerda@emmanuel.cl o wsp.
- NO ES NECESARIO IMPRIMIR ESTA GUÍA.
- Pueden trabajar en grupos de 2 o 3, o individualmente. Si trabaja en grupos recuerde mencionar los nombres de cada integrante.

1. Si , y = 4
$$z = 16$$
 , la expresión $\sqrt[3]{x\sqrt{y\sqrt{z}}}$ equivale a

- a) 2
- b) 4
- c) 16
- d) ³√32
- e) ³√128
- 2. El valor de la expresión $\sqrt[3]{27} \cdot (\sqrt{3})^6$ es
 - a) $\left(\sqrt{3}\right)^3$
 - b) $9\sqrt{3}$
 - c) $27\sqrt{3}$
 - d) 81
 - e) 729
- 3. Para racionalizar $\sqrt[3]{2+\sqrt{3}}$ hay que amplificar por
 - a) $\sqrt{2+\sqrt{3}}$ y $2+\sqrt{3}$
 - b) $\sqrt{2-\sqrt{3}}$ y $2+\sqrt{3}$
 - c) $\sqrt{2+\sqrt{3}}$ y $2-\sqrt{3}$
 - d) $\sqrt{2+\sqrt{3}}$ y $4-\sqrt{3}$
 - e) $\sqrt{2+\sqrt{3}}$ y $4+\sqrt{3}$
- 4. ¿Cuál de los siguientes números pertenecen a los reales?
 - A) ⁸√-64
 - B) ⁴√-3
 - c) ³√−4
 - D) √√-2
 - E) ¹²√-8

- 5. resolver $\sqrt[6]{1} + \sqrt[3]{-27} + \sqrt[27]{-1}$ se obtiene
 - A) 3
 - B) -3
 - C) 4
 - D) 2
 - E) 2
- Al reducir $\sqrt[3]{3\sqrt[3]{3}}$ se obtiene
 - A) ⁸√81
 - B) ¹⁸√81
 - c) ⁸√27
 - D) ¹⁸√9
 - E) ∜81
- 7. La expresión $\sqrt{3p^6q^3}$ es equivalente a
 - A) $(3p^6q^3)^2$
 - B) $(3p^6q^3)^{\frac{1}{3}}$ C) $9p^{12}q^6$

 - D) $p^2q\sqrt{3q}$
 - E) $p^2q\sqrt{3}$
- Al resolver $\sqrt{3x+24}-4=0$ se obtiene
 - A) $x = \frac{8}{3}$
 - B) $x = -\frac{8}{3}$
 - c) $x = \frac{20}{3}$

 - E) No tiene solución

- 9. $\frac{\sqrt{2} + \sqrt{8}}{\sqrt{2}}$
 - A. $1 + \sqrt{8}$
 - B. $\sqrt{8}$
 - c. √5
 - D. 3
 - E. Ninguno de los valores anteriores
- 10. ¿A qué potencia hay que elevar $\sqrt{5}$ para obtener 25
 - a) 2
 - b) 3
 - c) 4
 - d) 5
 - e) 6
- 11. La expresión $\sqrt{5-x}$ corresponde a un número real para:
 - I) Cualquier valor de x
 - II) x = 5
 - III) x < 5
 - A) Sólo I
 - B) Sólo II
 - C) Iyll
 - D) II y III
 - E) Ninguna de las anteriores
- 12. Al sumar $\sqrt{\sqrt{3}} + \sqrt[4]{48}$ resulta
 - A) ∜51
 - B) √3
 - c) 4⁴√3
 - D) 3∜3
 - E) 2∜3

- 13. El valor de $9^3 + 9^3 + 9^3$ es
 - A) 81
 - 37 B)
 - C) 27^{3}
 - 99 D)
 - 27^{9} E)
- El número $\sqrt{3^{64}}$ es igual a 14.
 - 38 A)
 - B) √192
 - $(\sqrt{3})^{8}$ C)
 - 3^{32} D)
 - 3^{62} E)
- 15. El valor de $\sqrt[3]{3} \cdot \sqrt[3]{-9}$ es
 - A) -3
 - B) 3
 - C) ⁶√-27
 - D) ⁹√-27
 - E) ninguno de los valores anteriores.
- 16. $\left(\sqrt{48} + \sqrt{192} \sqrt{27}\right)$: $\sqrt{3}$ =
 - A)
 - 107 $15\sqrt{3}$ B)
 - $9\sqrt{3}$
 - D) 15
 - E) 9
- 17. $7 \cdot \sqrt{\frac{3}{7}} =$
 - A)
 - B) $\sqrt{21}$
 - $\sqrt{6}$ C)
 - $\sqrt{3}$ D)
 - 3 E)

ITEM II DESARROLLO

$$\sqrt{\frac{2a}{3}} \cdot \sqrt{\frac{3}{8a}} \cdot \sqrt{\frac{2a}{3}}$$

2.
$$\sqrt{5}-1$$
)($\sqrt{2}+1$) - ($\sqrt{5}+1$)($\sqrt{2}+1$) + $\sqrt{2}$

3.
$$\frac{\sqrt{ab}}{\sqrt{\frac{a}{b}} - \sqrt{\frac{b}{a}}}$$

4.
$$\sqrt[3]{a} \cdot \sqrt{a^3} \cdot \sqrt[5]{a}$$

$$\int_{5.} \left(\frac{2 - \sqrt{2}}{1 - \sqrt{2}} \right)^{\frac{1}{2}}$$

6.
$$\sqrt{9x+4} - 3\sqrt{4x-11} = 5$$

7.
$$\sqrt{x+17} + \sqrt{x+4} = 3\sqrt{x+8}$$