Guía Cursos Anuales

Física 2005

Fuerza y movimiento IV

Plan COMÚN

Introducción

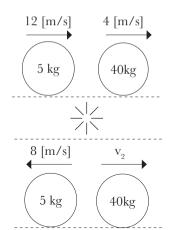
A través de la ejecución de la presente guía el alumno deberá desarrollar y aplicar los siguientes aprendizajes esperados y habilidades:

Aprendizaje Esperado

Comprender los fenómenos cotidianos asociados a la cantidad de movimiento lineal de partículas y sistemas de partículas y sus relaciones con las Leyes de Newton.

Habilidades

- Reconocimiento de simbología, convenciones y modelos.
- Comprensión de procesos y leyes de la Física.
- Aplicación de procesos y leyes de la Física.

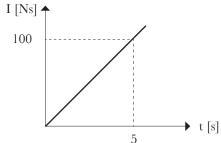

Contenidos

- · Cantidad de movimiento Momentum Lineal de un cuerdo Cantidad de movimiento lineal de un sistema.
 - Principio de Conservación del Momentum Lineal.
- Choques:
- Tipos de Choque
- Impulso Definición y su relación con el momentum lineal.

Fuerza y movimiento 4

- 1. Un camión de 2.000 [kg] de masa que se mueve a 36 [km/h] choca con un árbol deteniéndose en 0,1 [s]. La fuerza promedio del impacto es:
- **A)** -10⁵ [N]
- **B)** 2·10⁻⁵ [N]
- C) $-4 \cdot 10^5$ [N]
- **D)** $4 \cdot 10^5$ [N]
- E) $-2 \cdot 10^5$ [N]
- 2. Un camión de masa m se mueve con velocidad 2v y choca con un tren de masa 2m en reposo. ¿Cuánto vale la suma de las cantidades de movimiento de ambos cuerpos después del choque?
- **A)** 6mv
- B) 5mv^2
- **C)** 4mv
- **D)** 3mv²
- **E)** 2mv
- 3. Un cuerpo de 10 [kg] de masa se encuentra inicialmente en reposo. Si comienza a cambiar su rapidez a razón de 30 [m/s] por cada segundo, entonces la variación del momentum del cuerpo y el impulso aplicado a 4[s] de haber comenzado el movimiento, serán respectivamente.
- A) [kg·m/s] 400 600 $[N \cdot s]$
- **B)** 1.200 $[N \cdot s]$ 1.200 $[N \cdot s]$
- C) 300 [kg·m/s] 1.200 $[N \cdot s]$
- **D)** 1.000 $[N \cdot s]$ 3.600 $[N \cdot s]$
- 200 [kg·m/s] 600 $[N \cdot s]$ E)

- 4. Un móvil de 3 [kg] se desplaza hacia la derecha a 15 [m/s] al encuentro de otro móvil cuya velocidad es de 9 [m/s] en sentido contrario. Luego de la colisión plástica los cuerpos adquieren una rapidez de 6 [m/s]. ¿Qué valor(es) de masa debería tener el segundo cuerpo?
- 1,8 [kg]
- II. 10 [kg]
- III. 21 [kg]
- A) Sólo I
- B) Sólo II
- C) Sólo III
- D) Sólo I y II
- E) Sólo I y III
- 5. Para la colisión que representa el diagrama, \overrightarrow{v}_0 después de la interacción es
- **A)** 2,5 [m/s]
- **B)** 4,5 [m/s]
- C) 6.5 [m/s]
- **D)** 8.5 [m/s]
- **E)** 9.5 [m/s]


Enunciado para las preguntas 6 y 7: Sobre un cuerpo de masa 10 [kg], inicialmente en reposo, actúa una fuerza durante 2 [s], adquiriendo una rapidez de 4 [m/s].

- 6. ¿Cuál es la magnitud del impulso aplicado?
- **A)** 10 [Ns]
- **B)** 20 [Ns]
- **C)** 30 [Ns]
- **D)** 40 [Ns]
- **E)** 50 [Ns]

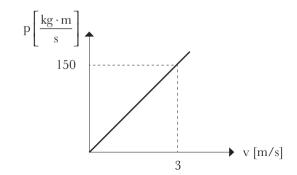
- 7. ¿Cuál es la magnitud de la fuerza aplicada?
- A) 10 [N]
- **B)** 20 [N]
- C) 30 INI
- **D)** 40 [N]
- **E)** 50 [N]
- 8. Para la situación representada en el gráfico adjunto, determine la magnitud de la fuerza aplicada.

- **B)** 250 [N]
- C) 100 [N]
- **D)** 20 [N]
- **E)** 0,05 [N]

- 9. Se tiene un cuerpo de 5 [kg] de masa cuya aceleración en función del tiempo está representada en el gráfico. El impulso total aplicado al móvil será:
- A) 15 $[N \cdot s]$
- B) 35 [N·s]
- C) 75 [N·s]
- **D)** 175 $[N \cdot s]$
- **E)** $350 [N \cdot s]$

- 10. Si a dos cuerpos a y b en reposo cuyas masas son tales que Ma = 2 Mb, se les aplican impulsos de igual módulo. La razón Pa de las cantidades de movimiento que adquieren los cuerpos es:
- **A)** 1:2
- **B)** 1:4
- **C)** 2:2
- **D)** 2:1
- **E)** 4:1

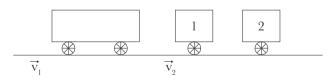
- II. Una persona de 60 [kg], se encuentra detenida en una pista de patinaje (roce despreciable) con una caia de 5 [kg] en sus manos. Al lanzar la caia, la persona adquiere una velocidad de 0.5 [m/s] en la misma dirección de la caja, pero de sentido contrario; la rapidez de la caja es:
- **A)** 60 [m/s]
- **B)** 10 [m/s]
- C) 6 [m/s]
- **D)** 2 [m/s]
- **E)** 0.5 [m/s]


Enunciado para las preguntas 12 y 13: Sobre una superficie sin roce, un bloque de 3 [kg] que se mueve a 4 [m/s] hacia la derecha choca con otro bloque de 8 [kg] que se mueve a 1,5 [m/s] hacia la izquierda. Después del choque, los bloques permanecen unidos.

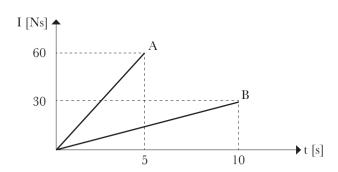
- 12. Determine la cantidad de movimiento antes del choque.
- A) 33 $\left\lceil \frac{\text{kg} \cdot \text{m}}{\text{s}} \right\rceil$
- B) $24 \left[\frac{\text{kg} \cdot \text{m}}{\text{s}} \right]$
- C) $16 \left[\frac{\text{kg} \cdot \text{m}}{\text{s}} \right]$
- D) $12 \left[\frac{\text{kg} \cdot \text{m}}{\text{s}} \right]$
- E) 0 $\left\lceil \frac{\text{kg} \cdot \text{m}}{\text{s}} \right\rceil$
- 13. La rapidez de los cuerpos después del choque.
- **A)** 3 [m/s]
- **B)** 2,2 [m/s]
- C) 1,5 [m/s]
- **D)** 0,75 [m/s]
- **E)** 0 [m/s]

14. Para el gráfico adjunto, determine la masa del cuerpo.

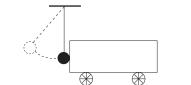
E) 0,02 [kg]


15. Si el momentum de un cuerpo de masa constante permanece constante, se puede concluir que la fuerza neta sobre el es:

- A) Constante
- B) Variable
- C) Positiva
- D) Nula
- E) Negativa


16. Sobre un cuerpo de masa m se aplica una fuerza F durante un tiempo t, generando un impulso I. Si se duplica la fuerza, ¿qué debe suceder con el tiempo para mantener el mismo impulso?

- A) Se debe reducir a la mitad.
- B) Se debe reducir a la cuarta parte.
- C) Se debe mantener igual.
- D) Se debe duplicar.
- E) Se debe cuadruplicar.


17. Un vagón se desplaza a 10 m/s hacia la derecha, es fragmentado por una explosión en dos partes iguales (ver figura), siendo \vec{v}_1 y \vec{v}_2 sus respectivas velocidades después de la explosión, indique la alternativa que físicamente NO puede ser correcta:

- A) 20 [m/s] hacia la derecha
- 0 [m/s].
- B) 20 [m/s] hacia la derecha
- 5 [m/s] hacia la derecha.
- C) 30 [m/s] hacia la derecha
- 10 [m/s] hacia la izquierda.
- D) 25 [m/s] hacia la derecha E) 50 [m/s] hacia la derecha
- 5 [m/s] hacia la izquierda. 30 [m/s] hacia la izquierda.
- 18. La relación entre las masas de los cuerpos es m_e = 2m_a. En relación al gráfico, es correcto afirmar:
- I. La fuerza aplicada a A es 12 [N]
- II. La fuerza aplicada a B es 3 [N]
- III. La relación entre las aceleraciones adquiridas es $8a_{\scriptscriptstyle \rm B}=a_{\scriptscriptstyle \rm A}$
- A) Sólo I.
- B) Sólo II.
- C) Sólo III.
- D) Sólo I y II.
- E) I, II y III.

- 19. Una bola de fierro de I [kg] sujeta a una cuerda es lanzada contra un carrito de masa 2 [kg] en reposo. La esfera va a 3 [m/s] inmediatamente antes del impacto. Con respecto al movimiento de los cuerpos inmediatamente después del choque, es correcto afirmar que la(s) situación(es) que podría(n) ocurrir es(son):
- I. La esfera queda en reposo y el carrito sigue a 1,5 [m/s].
- II. La bola y el carrito se desplazan juntos a I [m/s] hacia la derecha.
- III. La esfera se regresa a I [m/s] y el carrito avanza a 2 [m/s].
- A) Sólo I.
- B) Sólo II.
- C) Sólo III.
- D) Sólo I y II.
- E) I, II y III.

- 20. Un tractor de masa 4 [ton] se desplaza por la carretera y choca de frente con un auto de masa 900 [kg] que viajaba a 80 [km/h] en sentido contrario. Si inmediatamente después del choque los vehículos quedan detenidos, ¿qué rapidez llevaba el camión al momento de chocar?
- **A)** 12 [km/h]
- **B)** 16 [km/h]
- C) 18 [km/h]
- **D)** 20 [km/h]
- **E)** 25 [km/h]

Prepara tu próxima clase:

2ª Prueba de los contenidos tratados en las clases anteriores.

Pregunta	Alternativa	Habilidad
1	E	Aplicación
2	E	Comprensión
3	В	Aplicación
4	E	Análisis
5	C	Aplicación
6	D	Comprensión
7	В	Aplicación
8	D	Comprensión
9	E	Comprensión
10	C	Conocimiento
11	C	Aplicación
12	E	Aplicación
13	E	Aplicación
14	D	Comprensión
15	D	Comprensión
16	A	Análisis
17	В	Análisis
18	E	Comprensión
19	E	Análisis
20	C	Aplicación

Mis notas
-

Grupo Educacional Cepech