Código FS-05

Guía Cursos Anuales

Física 2005

Fuerza y movimiento I

Plan COMÚN

Introducción

A través de la ejecución de la presente guía el alumno deberá desarrollar y aplicar los siguientes aprendizajes esperados y habilidades:

Aprendizaje Esperado

- Comprender y aplicar los conceptos de masa, fuerza y las Leyes de Newton.
- Diferenciar masa de peso

Habilidades

- Reconocimiento de simbología, convenciones y modelos.
- Comprensión de procesos y leyes de la Física.
- Aplicación de procesos y leyes de la Física.

Contenidos

Fuerza y Movimiento

Dinámica

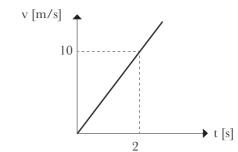
Masa (masa inercial, masa gravitatoria).

Fuerza.

Leyes de Newton.

Peso.

Análisis de g en la superficie de la Tierra


Análisis dimensional.

Fuerza y movimiento 1

Para esta guía considere $g = 10 \text{ [m/s}^2\text{]}$

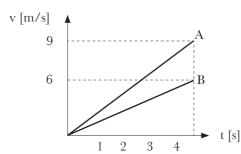
1. Un auto de 500 [kg] de masa, al ser empujado, se mueve sobre un plano horizontal como lo indica su gráfico v vs t. ¿ Cuál será la fuerza neta que actúa sobre él ?

- **A)** 0,5 [kN]
- **B)** 1,0 [kN]
- C) 2,0 [kN]
- **D)** 2,5 [kN]
- **E)** 3,5 [kN]

2. Si sobre una caja de 2 [kg] de masa, apoyada sobre una superficie lisa, actúan dos fuerzas horizontales, como indica la figura ¿cuál es la aceleración de la caja?

- A) 5 $[m/s^2]$
- **B)** 4 [m/s²]
- C) $3 [m/s^2]$
- **D)** $2 [m/s^2]$
- **E)** 1 [m/s²]

Enunciado para las preguntas 3, 4 y 5: Tres bloques de masas m₁ = 10[kg], m₂ = 20[kg] y m₃ = 30[kg] están unidos mediante cuerdas, sobre una superficie sin roce. Se aplica una fuerza horizontal de 60[N].

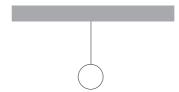


3. Determine la aceleración del bloque de masa m₂

- **A)** 5 [m/s²]
- **B)** 4 [m/s²]
- C) $3 [m/s^2]$
- **D)** $2 [m/s^2]$
- **E)** 1 [m/s^2

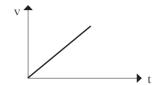
- 4. Determine la tensión T₁ de la cuerda
- **A)** 10 [N]
- **B)** 20 [N]
- C) 30 [N]
- **D)** 60 [N]
- E) Faltan datos
- 5. Determine la tensión T₂ de la cuerda
- **A)** 10 [N]
- **B)** 20 [N]
- C) 30 [N]
- **D)** 50 [N]
- **E)** 60 [N]
- 6. Para mover un televisor de 12 [kg] apoyado sobre un plano horizontal, se le aplica una fuerza horizontal constante que le comunica una aceleración neta de 0,4 [m/s²]. La fuerza ejercida sobre el televisor y la distancia que recorre en 5 [s] a partir del instante de aplicación de la fuerza son respectivamente.
- **A)** 1,6 [N] y 1 [m]
- **B)** 3,2 [N] y 3 [m]
- C) 4,8 [N] y 5 [m]
- **D)** 5,4 [N] y 7 [m]
- **E)** 7,0 [N] y 9 [m]
- 7. Un cuerpo pesa 125 [N] en la superficie terrestre. ¿Cuál es la masa de dicho cuerpo?
- **A)** 1250 [kg]
- **B)** 125 [kg]
- **C)** 12,5 [kg]
- **D)** 1,25 [kg]
- E) Otro valor

- 8. Un hombre de 70 [kg] se encuentra de pie sobre una pesa dentro de un ascensor. La pesa registra la fuerza ejercida sobre ella por cualquier objeto que se coloque encima. Es correcto afirmar que:
- I. La lectura de la pesa será de 826 [N] si el ascensor sube con una aceleración de 1,8 [m/s²]
- II. La lectura de la pesa será de 574 [N] si el ascensor baja con una aceleración de 1,8 [m/s²]
- III. La lectura de la pesa siempre será la misma, independientemente de la aceleración del ascensor.
- A) Solo I
- B) Solo II
- C) Solo III
- D) Solo I y II
- E) Ninguna
- 9. Para el problema anterior, determine la lectura de la pesa, cuando baja aumentando su velocidad en 10[m/s] en casa segundo.
- **A)** 700 [N]
- **B)** 70 [N]
- **C)** 7 [N]
- **D)** 0 [N]
- E) 7⁻¹ [N]
- 10. Si A y B son objetos que experimentan igual fuerza. Determina la relación entre las masas $m_A: m_B$.
- **A)** 1:3
- **B)** 2:3
- **C)** 3:3
- **D)** 3:2
- **E)** 3:1

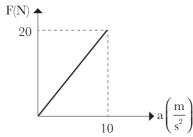


II. Un astronauta viaja a un cuerpo celeste, en que la aceleración de gravedad es la quinta parte que en la Tierra. Si en la Tierra tiene masa "m" y peso "p". En dicho planeta su masa y peso serán respectivamente:

- A) myp
- **B)** 5m y 5p
- **C)** m y <u>p</u>
- E) $\frac{m}{5}$ y $\frac{p}{5}$


12. Un objeto de m = 12 [kg] está suspendido como indica la figura. El módulo de la fuerza neta resultante sobre él es:

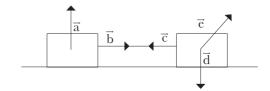
- A) -12 [N]
- 12 [N]
- C) 0 [N]
- **D)** -120 [N]
- 120 [N]


13. Un cuerpo se mueve sobre una superficie sin roce como indica el gráfico adjunto. Es correcto afirmar respecto a la fuerza neta que:

- A) Va aumentando
- B) Va disminuyendo
- C) Es constante
- D) Es nula
- E) Ninguna de las anteriores

14. Determine la masa de un cuerpo sometido a un experimento físico, cuyos resultados se expresan en el gráfico adjunto.

- **A)** 0,5 [kg]
- B) 1 [kg]
- 2 [kg]
- **D)** 20 [kg]
- **E)** 200 [kg]



15.	. Si sobre un cuerpo, la fuerza neta resultante es nula, es posible que:
II.	Esté en reposo Se mueva con velocidad constante Esté en movimiento y se detenga.
B) C) D)	Sólo I Sólo II Sólo III Sólo I y II I, II y III
	. Un cuerpo de masa "m" se desliza sobre una mesa horizontal sin roce, con una aceleración nstante "a". El módulo de la fuerza normal esque el módulo del peso.
B) C) D)	mayor mayor o igual igual menor menor o igual
	. Un cuerpo de masa "m" se deja caer por un plano inclinado sin roce, cuyo ángulo de elevación $lpha$. La aceleración que adquiere es:
B) C)	g sen α g cos α g tg α tg α
	. Un cuerpo de masa "m" se deja caer por un plano inclinado sin roce, cuyo ángulo de elevación $lpha$. El módulo de la fuerza normal es:
B) C)	mg sen α mg cos α mg tg α tg α

E) mg

19. En el diagrama de la figura, la fuerza normal está representada por:

- A) \vec{a}
- **B**) \vec{b}
- **C**) \vec{c}
- D) \vec{d}
- **E**) \vec{e}

20. Al aplicar una fuerza de 200 [N] a un cuerpo, ésta produce una aceleración de 4[m/s²]. ¿Qué aceleración adquiere el cuerpo, si se aplica además otra fuerza de 50[N] en sentido contrario a la anterior?

- **A)** $2 [m/s^2]$
- **B)** 3 [m/s²]
- C) 5 [m/s²]
- **D)** 8 [m/s²]
- **E)** $10 \, [\text{m/s}^2]$

Prepara tu próxima clase:

Fuerza de roce

Pregunta	Alternativa	Habilidad
1	D	Comprensión
2	В	Aplicación
3	E	Aplicación
4	A	Aplicación
5	C	Aplicación
6	C	Aplicación
7	C	Aplicación
8	D	Análisis
9	D	Análisis
10	В	Comprensión
11	C	Aplicación
12	C	Comprensión
13	C	Comprensión
14	C	Comprensión
15	D	Conocimiento
16	C	Conocimiento
17	A	Análisis
18	В	Análisis
19	A	Conocimiento
20	В	Aplicación

Mis	notas

Mis notas		

Grupo Educacional Cepech